

Decadal Survey Mission Development Symposium

DESDynl: Deformation, Ecosystem Structure, and Dynamics of Ice

Mission Study Progress

DESDynl Pre-Project Study Team
Jet Propulsion Laboratory/Goddard Space Flight Center
Study Lead: Yuhsyen Shen/JPL
11 February 2009

DESDynl Mission Overview

DESDYNI Mission Sciences

- Deformation of Solid Earth for improving forecasts of seismic and volcanic events
- Ecosystem Structure for improving carbon budgets and models and characterizing species habitats
- Dynamics of Ice for improving understanding of changes in ice masses and climate

DESDynl Instrumentation

- Multi-beam Profiling Lidar
- □ Fully-polarimetric Multi-mode L-band Radar
- GPS receiver for precision orbit determination and reconstructions

15m reflector S/C bus Radar Feed

DESDynI Implementation Challenges

- Accommodating multi-beam lidar and polarimetric radar on single platform
 - Alternative: Two platforms radar-only platform and lidar-only platform
- □ Integrating observation strategies among three sets of disciplinary science requirements with single radar and radar/lidar co-observations
- Conducting flight/ground trades for orbit control for repeat-pass interferometry and for data rate/volume handling
- □ Assessing alternate SAR techniques (ScanSAR vs. SweepSAR)
- □ Assessing radar architecture using reflector with arrayed feed vs. planar phased array antenna
- Exploring NASA mission cost reduction with foreign partners

- → FY09 Objectives and Milestones
 - □ Antenna concept (reflector vs planar array) downselection (Jan 2009)
 - □ Lidar instrument design definition (Dec 2008)
 - □ Team-X trade studies: radar+lidar single platform, radar-only platform and TanDEM-L (Jan 2009)
 - □ Lidar-only platform design assessment (Jan 2009)
 - □ Single vs Dual spacecraft down-selection (Mar 2009)
 - □ Mission Concept Review (Sep 2009)
- ◆ FY09 Deliverables
 - □ Application Workshop Report (Feb 2009)
 - □ Team-X/IDL/MDL Reports (Mar 2009)
 - □ MCR Project Documents (Sep 2009)

Pre-Phase A Mission Study Overview

Perform pre-phase A study with an end-to-end mission concept with life-cycle mission cost for MCR by the end of Sep '09, with KDP-A to follow

- Develop consistent set of requirements (science, mission systems) and a feasible end-to-end design that is compliant with requirements
- Develop models and analysis tools; perform system sensitivity analyses and observation strategies
- Perform analysis of alternates of mission architecture (one or two platforms) and instrument architecture (articulated or fixed lidar, planar or reflector antenna for radar, ScanSAR or SweepSAR)
- Perform mission lifecycle cost estimate
- Form Science Study Group to develop and integrate science requirements and observation strategies
- ◆ Technology Readiness Assessments
 - Lidar laser in relevant environments
 - Mesh reflector thermal-elastic properties
 - □ New SAR technique (SweepSAR) could reduce SAR mode switching, hence contention
 - □ Large lidar aperture and gimbal design (for Co-flyer)
- Explore international partnerships
 - □ DLR on TanDEM-L for possible cost leverage in joint mission implementation
 - □ JAXA on ALOS-II for possible joint mission observation and data exchange
 - □ ESA on BIOMASS for possible joint mission observation and data exchange
- Utilize team grass-root approach combined with JPL/GSFC concurrent design/costing capabilities
- ◆ Conduct application workshops for community engagement and buy-in

Platform Option Trades

- Option 1: Single spacecraft
 - 600 km orbit carrying lidar, synthetic aperture radar, and GPS receiver payload
 - (aka Co-Flyer)
- Option 2: Two spacecraft
 - One spacecraft in 760 km orbit carrying synthetic aperture radar and GPS receiver payload
 - ☐ The second spacecraft in 400 km orbit carrying lidar payload
 - (aka Free-Flyers)
- → Option 3: Three spacecraft
 - □ Lidar free-flyer in 400km orbit
 - □ Two identical radar free-flyers in formation flight at 760km
 - □ Radar free-flyers would be in collaboration with DLR

Option 1 Design

Payload	InSAR, Lidar, GPS
Orbit	600 km
Launch Mass	2947 kg
Repeat Cycle	8-12 Days
Required Power (orbit avg w/ margin)	2526 W
Payload Data Rate	Up to 2.4 Gbps Up to 0.5 Gbps Orbit avg.
Payload Risk Category	Class B
Launch Vehicle	Atlas V 501

Launcher Fairing

DESDynl – 5

Option 2: Radar & Lidar Free-Flyers

	Radar FF	LIDAR FF	
Payload	InSAR, GPS	LIDAR	
Orbit	760 km	400 km	
Launch Mass	1964 kg	548 kg	
Repeat Cycle	8 Days	90 Days	
Required Power (orbit avg w/ margin)	1709 W	1117 W	
Payload Data Rate	Up to 2.4 Gbps peak Up to 0.5 Gbps orbit avg.	~4 Mbps orbit avg.	
Payload Risk Category	Class B	Class C (TBR)	
Launch Vehicle	Atlas V 501	Taurus 3210	

Radar Free-Flyer

Option 3: Radar & Lidar Free-Flyers

	Radar FFs (2)	LIDAR FF
Payload	InSAR, GPS, Optical Comm	LIDAR
Orbit	760 km (formation flight)	400 km
Launch Mass	4531 kg (both)	548 kg
Repeat Cycle	8 Days	90 Days
Required Power (orbit avg w/ margin)	1986 W (each)	1117 W
Payload Data Rate	Each up to 2.4 Gbps	~4 Mbps
Payload Risk Category	Class B (TBR)	Class C (TBR)
Launch Vehicle	TBD	Taurus 3210

Radar Free-Flyers

DESDynl Radar Technologies

RADAR Reflector: 15m diameter

Reflector; has flown in space

UAVSAR antenna as basis for DESDynI feed; needs engineering and packaging

UAVSAR 100 W T/R Module

Aquarius Chirp Generator

Direct L-band Sampler (IIP)

Composite tubes to RADAR feed and reflector have a square cross-section 0.2m on edge and a wall thickness of 2.5mm DESDynl – 8

Bus: 2.5m x 2m x 1.25m

High Gain Antenna: 0.5m diam, 2 DOF

RADAR Feed:

5m x 0.85m x 0.2m I-Beam

Solar Array: 3m x 4m x 0.025m

HOMER Laser

- Breadboard life-test
 - Multi-billion shots complete
- ETU Environmental tests
 - Vibe and T-VAC complete
- GSFC engineering review
 - Currently TRL-5
 - Specific tasks for achieving TRL-6 identified.

1 m diameter telescope

• GLAS heritage

Detectors

- TRL-9
- Heritage: MOLA, SLA, GLAS, MLA

To-Date Results: Accomplishments (1 of 2)

Science

- Science requirements were documented in Draft Science Definition Document (Ver. 13)
- Requirements traceability matrix was created
- □ Completed comparative matrix to DLR TanDEM-L requirements (Ver. 5)
- ◆ Science-to-Instrument Sensitivity Analysis
 - Measurements error model defined and scoped; Error Model document drafted;
 Preliminary Solid Earth Error Assessment presented at Jan 09 TIM
 - □ UAVSAR flights (for repeat-pass and temporal decorrelation) planned
 - LVIS flights (for lidar off-pointing) conducted under R&A
 - Exchanged InSAR error models with DLR; agreed on the models and algorithms
 - Multi-Beam Lidar topography measurement studies for Cryo and solid Earth underway (FY09)- Rowlands (PI).
 - □ SAR Software Workshop held 7/28-31/08 and software development funded under AIST
- Systems Engineering and Mission Design
 - Completed Instrument and Mission Concept studies
 - Mission concept report outlined
 - Orbit control and error budget analyzed, meets requirement for repeat-pass InSAR

To-Date Results: Accomplishments (2 of 2)

Early requirements and designs of instruments & subsystems – radar, lidar, GPS receiver, and ground data systems

- Conducted preliminary assessment of radar architecture of using reflector with array feed vs. planar phased array, with reflector architecture selected
- □ Contributed to reflector thermal-elastic model testing (under IPP)
- □ Conducted vibration and thermal vacuum testing on Laser (under IRAD)
 - GSFC internal assessment rated HOMER laser at TRL-5
- ◆ Significant progress on technology/mission options studies
 - □ SweepSAR concept/technique explored for possible full-swath coverage operation to ease observation conflicts, with concept proven viable but may need simulation
 - DLR/TanDEM-L collaboration has been positive with good synergism,
 - Exchanging science as well as mission/instrument design concept;
 - TanDEM-L non-zero baseline InSAR can further enhance science
 - □ JAXA Collaboration possible for radiometric and orbital compatibility
 - Component technology at high level of maturity; some system technology is not as matured

Results documented

- □ DESDynl Website desdyni.jpl.nasa.gov, to capture workshop reports, etc. now up and running for public and private (password-protected) access
- DocuShare site for unreleased documents

Meetings and Workshops Held

◆ DESDynI/TanDEM Technical Interchange Meeting (TIM) @J	IPL 4/7-8/08
◆ DESDynI Working Group Meeting @ GSFC	6/5-6/08
◆ DESDynI/TanDEM TIM @DLR	6/5-6/08
→ DLR Science Meeting	6/9/08
◆ DESDynI/TanDEM TIM @Boston, following IGARSS	7/17-19/08
→ DESDynI Science/Working Group Meeting @Greenbelt	10/14-15/08
→ DESDynI/ICESat-II Conference	10/16/08
 Decision made not to further study or consider putting Distribution ICESat-II platform 	ESDynl lidar on
→ DESDynI Application Workshop @Sacramento	10/29-31/08
Strong endorsement from multi-agency application users	3
◆ DESDynI/TanDEM TIM and Science Meeting @ DLR	11/11-14/08
◆ Instrument Design lab @GSFC for Co-Flyer Lidar instrument	t 11/17-11/21
◆ DESDynI/TanDEM TIM @JPL	1/8-9/09
◆ TEAM-X Mission design studies of Co-flyer, Radar Only and architectures	Tandem-L 1/12-15/09
→ Mission Design Lab study of Free-Flying LIDAR platform	1/26-29/09

Milestone/Deliverable	Schedule
Preliminary set of science and measurement requirements	Complete
Preliminary assessment of lidar off-pointing and radar quad-pol wide swath mode	Mid-Feb 2009
3. Preliminary AoAs for US options, including findings from Team-X and IDC sessions	Complete
4. Start to prepare and solicit industrial information	Mid-Feb 2009
5. Review of US AoA options to select the most feasible option for further detailing in preparation for the MCR	Early-Mar 2009
6. Preliminary AoA for Tandem-L option	End-Mar 2009
7. Consolidating strawman requirements and design	End-Apr 2009
8. Draft programmatic documents for MCR/KDP-A	End-Jun 2009
9. Draft technical documents for MCR/KDP-A	End-Jul 2009
10. Conduct Acquisition, Strategy Planning meeting (with ESM PO and HQ)	End-Aug 2009
11. Conduct Centers and partners internal reviews	End-Aug 2009
12. Mission Concept Review with final MCR documents completed	End-Sep 2009
13. Draft Formulation Authorization Document (from HQ)	End-Nov 2009
14. KDP-A Review with final KDP-A documents completed (by HQ)	End-Jan 2010
15. HQ Approves Start of Formulation Phase (Phase A)	Begin-Apr 2010

DESDynl Study Challenges

- Single (with gimbaled lidar) versus dual platform configuration and decision criteria
 - □ Science and partnering vs. operational complexity and cost
- Integration of multi-discipline observation requirements for radar
 - Requires prioritizing use of radar for three sets of science disciplinary requirements over the mission life cycle
 - □ Limits data acquisition for applications community
- Radar operations and coverage are data rate/volume limited
 - □ 300+Mbps rate at 30% duty cycle for nominal radar modes (Quad-Pol/Dual-Pol)
 - □ > 2 Gbps rate at similar duty cycles for SweepSAR mode
 - □ Increasing downlink capacities would greatly enhance mission performance
- ◆ Integration of TanDEM-L or ALOS-2 requirements and schedules with varying degrees of difference in
 - □ Science objectives, technology infusion, schedule
- ◆ Pre-launch V&V for test-as-you-fly-it
 - □ Large deployable radar structure and system level V&V may need test facility improvement or new facility
- → FY'09 work was front-loaded to get to platform down-selection
 - □ Additional funds would improve robustness of MCR products, reduce risk

DESDynl Study Opportunities

opportunities for joint development for cost leverage

- ICESat-II Joint procurements & collaborative development
 - For Lidar-only platform: Commonality with ICESat-II: Beryllium telescope, detectors, analog to digital converters, test facilities, procedures, MOC, SOC.
- With TanDEM-L for radar-only platform:
 - Joint mission development; enhanced comm capabilities with DLR infrastructure; additional science products (DEM; interferometrically-derived 3D structure)
- Co-manifest launch for dual platforms
- GPS RO constellation contributor
- □ Design and architecture of SMAP, DESDynI, SWOT, (XOVWM) radar hardware
 - Principal instrument engineer for all instrument concepts was the same person (Louise Veilleux, JPL), designing with an eye toward commonality and technology infusion
 - Many components share common designs and interfaces, and can be made unique for missions with small adjustments
- Explore NASA options for enhanced telecom/downlink, crucial for high data-rate missions such as DESDynI, SWOT, HyspIRI, LIST.
- SWOT and DESDynl: possible shared ground processing architecture
- Explore common bus procurement
- Develop standards for radiometric compatibility and formation flight
 - This could be major step towards GEOSS and CEOS constellation goals.
- Science and Technology
 - Infusion of technology and new techniques
 - Radar and lidar data fusion

Back-Up Charts

What is StripSAR?

- Standard SAR mode
- Send a pulse of energy; receive echo; repeat
- Swath width limited by radar ambiguities
- What is ScanSAR?
 - Wider swath low resolution SAR mode
 - Execute sequence as follows:
 - Send a pulse of energy; receive echo; repeat 50-100 times
 - Repoint the beam across-track to position 2 electrically (almost instantaneous)
 - Send a pulse of energy; receive echo; repeat 50-100 times
 - Repoint the beam across-track to position 3 electrically (almost instantaneous)
 - Send a pulse of energy; receive echo; repeat 50-100 times
 - ScanSAR trades resolution (in along-track dimension) for swath: low impact on data rate
 - Generally poorer ambiguity and radiometric performance than Strip SAR
- Note: For each case, pulse energy is localized in a narrow portion of the radar swath elevation beam

SweepSAR

What is SweepSAR?

- Transmit pulse over wide beam in elevation
- Receive echo over narrow beam tracking echo with scanning receive beam
- Can require multiple simultaneous receive beams to ttrack multiple echoes
- What does SweepSAR Imply?
 - Wide swath with no loss in resolution
 - Narrow gaps (about the pulse width) when receiver is off during transmit event (fixed in processing)
 - Data rate for equivalent StripSAR resolution increases by from 2 to 6 times
 - Possibly multiple echoes to track simultaneously
 - 2 adjacent beams simultaneously to cover pulse transition from one beam to the next

Two forms of Scan-on-Receive

Planar Array:

- Transmit on few elements
- · Receive on all elements
- Phase-gradient change on receive to steer beam

Reflector / Array:

- Transmit on all elements
- Receive on few elements
- Phase-center change on receive to steer beam

digital feed array with T/R modules

Near-Term Earth Science Missions Involving Radar

Instrument development technical activities

	-								
/ /lission (~Launch)	SMAP (13) DE		DESD	DESDynI (15)		DFS (17)		SWOT (17)	
Phase (~09 / ~10)	В	С	Pre-A	Α	Pre-A	А	Pre-A	А	
System Eng	4	5	2	3	2	3	2	3	
Electronics	8	20	4	8	3	8	4	8	
Mech/Thermal	8	20	3	5	2	4	3	5	
Antenna	2	2	1	3	1	2	1	2	
Cross-Cutting Technologies	L				C, Ku		Ка		
Radar Electronics									
FSW	_6	S-m Ant/	15-m					tf Boom/	
Deployable Structure		Boom-	reed i	50 0HS	4		5-m R en	ectA rays	
EGSE •Target Sim •Testbed, I/F Sim									
MGSE									
Mission-Unique Technologies	•Large Spinnin •Electronics Int Slip Rings / Ro	erfaces thru	 Large Light-Weight Reflector Active Array Feed High-Throughput DSPs High-Efficiency T/Rs Thermal-Cycle Mitigation 		•C, Ku-Band •C, Ku Loop-E •Spinning Ant •4-Channel R	Back Cal enna	•Reflectarray •High-Throug •Ka EIK/TWT/ •Phase-Track	hput DSP	

lear-Term Earth Science Missions Involving Radar

Radar development technical activities

Mission (Launch?)	SMA	P (13)	DESDynl (15)		DFS (17)		SWOT (17)	
Phase (~09 / ~10)	В	С	Pre-A	А	Pre-A	А	Pre-A	А
Inst Oversight	LV 0.4	LV 0.2	LV 0.4	LV 0.6	LV 0.1	LV 0.1	LV 0.2	LV 0.2
SE - Perf	MS/CJ	MS/CJ	CC/SS	CC/SS	SD/DP	SD/DP	DF/BP	DF/BP
SE - Inst	KW/MF	KW						
RF Cog	DP	DP						
Dig Cog	MP/cc/vd	MP/cc/vd						
Cross-Cutting Technologies		4		4	-			
Chip Gen					C, Ku		Ка	
Freq Synth	L-u	ab di	L-up	<u> </u>	C, Ku		Ka up/dn	
Up/Down-Conv					up/uir -		up/ul/	
CPU								
ADC				4		4		
FPGA-CTU/DPU								
EGSE •Target Sim •Testbed, I/F Sim								
Mission-Unique Technologies	•Interfaces thru	u Slip Rings	•High-Throug •High-Efficien •Thermal-Cyc	cy T/R	•C, Ku-Band ⁻ •C, Ku Loop-E		•High-Through •Ka EIK/TWT/ •Phase-Track	Ā

DESDynl: Deformation, Ecosystem Structure, and Dynamics of Ice

- Recommended by the NRC Decadal Survey for near-term launch to address important scientific questions of high societal impact:
- How do we manage the changing landscape caused by the massive release of energy of earthquakes and volcanoes?
- How are Earth's carbon cycle and ecosystems changing, and what are the consequences?
- What drives the changes in ice masses and how does it relate to the climate?

Repeat Pass InSAR Polarimetric SAR Multibeam LIDAR Pass 2: After Motion Pass 1: Before Motion Amplitude_. return signal 1st level (canopy) Phase difference canopy structures 2nd level (bushes) ground **Vegetation structure Ground or ice motion** DESDy23-23

Pre-Phase A Study WBS

◆ Pre-Phase Study WBS (Adapted from NPR 7120.5D WBS)

→ Will use full L1 WBS for mission cost estimates and MCR, for either single platform (w/ radar+lidar) or dual platforms (radaronly and lidar-only)

- Per NASA Procedure Requirement 7120.5D "NASA Flight Project Management Processes and Requirements"
- Mission Concept Review
 - □ Leve1-Level 3 Requirements
 - Mission Operation Concept and Design Document (with analysis of alternates)
 - □ Project Work Breakdown Structure (WBS) and Dictionary
 - □ Lifecycle Networked Schedule
 - □ Lifecycle Cost Estimate
 - System Acquisition Strategy/Plan
 - Phase A Task Plan and (JPL Internal Work Agreements)
- ★ Key Decision-A to enter Project into Phase-A
 - Draft Project Formulation Authorization Document
 - MCR Review Report
 - Project and Program Recommendations
- DESDynl implementation schedule (to be assessed, depending on funding profile, personnel availability and long-lead item development)
 - Phase A: 5-6 months
 - □ Phase B: 8-10 months
 - □ Phase C/D: 33-39 months
 - □ Phase E: 60 months

L-band Pol-SAR Shared Platform Concept

L-Band SAR Single/Dual/Quad Pol 3-Beams, Right (shown)

or Left Looking Strip Mode ScanSAR Mode SweepSAR Mode

InSAR Spacecraft

Flight
Direction
~350km

Technology

Key required advanced technology investments have already been made

- L-band TR modules, antenna designs, trade studies, and modeling and simulation (\$20M over 10 years
- Under ESTO, UAVSAR system for quad-pol InSAR from aircraft (\$7M)
- Smaller size reflector (<12m) flown; thermal modeling and pointing under investigation

Total investment to date: \$27M

Engineering and packaging tasks remain

Features

- L-Band InSAR Phased Array Feed
- 15m Mesh Reflector
- Instrument is Dual Mode:
 - •Single/Dual-Pol. Mode 3 Beams, 120km Swath
 - •Quad-Pol. Mode 6 beams, 60km Swath
- 28 Patches are used in different combination to form S-Pol and Q-Pol Beams (see figure)
- Large panel area facilitates heat dissipation for the phased array
- Beams can be electronically steered for fast beam switching, or ScanSAR Mode
- SweepSAR mode leads to wider quad-pol swath, currently under investigation

Instrument Mode	L-Band S-Pol	L-Band Q-Pol
Antenna Size (m, dia)	15 (3 beams)	15 (6 Beams)
Bandwidth (Center) (MHz)	25 (1250)	25 (1250)
Peak Power (kW)	2.8	1.2
Look Angle (Deg)	25°/31°/37°	24° to 36°
PRF (Hz)	1300	2600
Swath Width (Km)	130/110/120	370 (50-77)
Res. (1 look) (m x m)	8 x 30 (scan) 8 x 8 (cont.)	11 x 8
NΕσ ₀ (dB)	-30	-35
Total Ambiguities (dB)	-20	-20
Data Rate (Mbps)	160/170/200	400

Multi-Beam Vegetation Shared Platform Lidar Concept

- Lasers, Telescope, Gyro, and Star Tracker all tightlycoupled on composite optical bench
- Primary mirror diameter: 1.5m

Technology Development Needs

Laser transmitter is currently at TRL 5:

- GSFC-designed HOMER laser tested to full flight performance requirements (output power, rep rate, beam quality, efficiency, and lifetime)
- All components space qualified (TRL 6 or higher)
- Testing of laser ETU in FY08 has verified the Multi-Beam Lidar performance in a relevant environment (vibration, thermal vacuum, etc.) to TRL 5.

Features of the Instrument Concept

Nadir-pointed Multi-Beam Lidar (1064 nm)

- 5- beams spaced nominally 5 km across-track
- 25 m laser footprint, 30 m along track spacing
- Multi-Beam Lidar operates as a vegetation structure sampler

Expected Multi-Beam Lidar Lifetime

- 6+ vears
- Laser tested to 5 B shots.
- Diodes tested to equivalent of 3 years of operations (so far) with <1 % degradation.

Performance:

- Range Resolution: 3 cm (bare ground), 1 m (vegetation)
- Geolocation accuracy: 10m horiz., < 0.1 m vertical

Shared Platform Concept Spacecraft

Multi-Beam Vegetation Free Flyer Lidar Concept

- Lasers, Telescope, Gyro, and Star Tracker all tightlycoupled on composite optical bench
- Primary mirror diameter: 1.0m

Technology Development Needs

Laser transmitter is currently at TRL 5:

- GSFC-designed HOMER laser tested to full flight performance requirements (output power, rep rate, beam quality, efficiency, and lifetime)
- All components space qualified (TRL 6 or higher)
- Testing of laser ETU in FY08 has verified the Multi-Beam Lidar performance in a relevant environment (vibration, thermal vacuum, etc.) to TRL 5.

Features of the Instrument Concept

Nadir-pointed Multi-Beam Lidar (1064 nm)

- 5- beams spaced nominally 5 km across-track
- 25 m laser footprint, 30 m along track spacing
- Multi-Beam Lidar operates as a vegetation structure sampler

Expected Multi-Beam Lidar Lifetime

- 6+ years
- Laser tested to 5 B shots.
- Diodes tested to equivalent of 3 years of operations (so far) with <1 % degradation.

Performance:

- Range Resolution: 3 cm (bare ground), 1 m (vegetation)
- Geolocation accuracy: 10m horiz., < 0.1 m vertical

